Date: 7/31/2018
Gage: My Gage
Characteristic: Thickness
Operators (o): 3
Parts (p): 10
Trials (n): 3

Analyzed by: Bill
USL: 3
LSL: -3
Process Average:
Print out of information entered by the user
Process Sigma: 2.5
Meas. Increment: 0.01
$\overline{\mathrm{X}}$ Chart for Operator-Part Averages

R Chart for Operator-Part Ranges

Control Chart Calculations

$\overline{\bar{X} \text { Chart }}$	$\overline{\bar{X}}$
	0.001
	\bar{R} Chart
	0.342

$$
\begin{gathered}
\mathrm{LCL}=\overline{\mathrm{X}}-\mathrm{A}_{2} \overline{\mathrm{R}} \\
-0.348 \\
\mathrm{LCL}=\mathrm{D}_{3} \overline{\mathrm{R}}
\end{gathered}
$$

depending on subgroup size.
where A_{2}, D_{3}, and D_{4} are control chart constants depending on subgroup size.

A_{2}	D_{3}	D_{4}
1.023	-	2.574

$\overline{\mathrm{X}}$ Chart Analysis

The \bar{X} chart shows the average value for each operator for each part.
The control limits on the \bar{X} chart are based on the average range.
The average range is representative of measurement error.
The \bar{X} chart control limits represent the variation obscured by measurement error.
The relative utility of the measurement system increases:

* The more out of control points there on are on the \bar{X} chart.
* The further the out of control points are away from the control limits.

22 out of 30 points are out of control on the chart.

R Chart Analysis

The R chart shows the results for the repeated measurements for each operator for each part.
It is a check of the consistency of the measurement process between the operators.
There is 1 out of control point on the R chart; the ranges are not consistent.
The reason for the out of control point should be corrected and the study repeated.
There are 54.7 degrees of freedom associated with the average range.
It is recommended to have at least 10 degrees of freedom.

The \bar{X} chart is a plot of the subgroup averages for the operator-part number combinations. The first subgroup is made up the results that Operator "a" got for part 1. This operator ran this part three different times (the number of trials).

The average and control limits are calculated and added to the chart. The control limits on this chart depend on the average range from the range chart (see below).

The R chart is a plot of the range of values within each operator-part number subgroup. Each range value is a measure of the repeatability of the test method. The average range and control limits are calculated and added to the chart.

The control chart calculations are given.

The X chart is analyzed. The control limits on this chart are based on the average range from the range chart. This average range represents measurement variability. If the test method is good, the measurement variability should be small. So, the average range should be small and the control limits should be tight around the average. The more out of control points the better.

The R chart is analyzed. This checks the consistency between the operators. There should be no out of control points. If there are, the reason should be found and eliminated and the study repeated.

The study should contain sufficient data (degrees of freedom). This is checked here.

Main Effects (0.05 ANOME) Chart

Mean Range (0.05 ANOMR) Chart

ANOM Calculations

Main Effects		$\overline{\mathrm{X}}$
		0.001
Mean Range		$\overline{\mathrm{R}}$
		0.342

$\mathrm{LCL}=\overline{\mathrm{X}}-\mathrm{ANOME}_{0.05} \overline{\mathrm{R}}$
-0.070
$\mathrm{LCL}=\mathrm{LMR}_{0.05} \overline{\mathrm{R}}$
0.234
$\mathrm{UCL}=\overline{\mathrm{X}}+\mathrm{ANOME}_{0.05} \overline{\mathrm{R}}$
0.073
$\mathrm{UCL}=\mathrm{UMR}_{0.05} \overline{\mathrm{R}}$
0.455
where ANOME, LMR, and UMR are scaling factors that depend on the amount of data.

ANOME $_{0.05}$	$\mathrm{LMR}_{0.05}$	$\mathrm{UMR}_{0.05}$
0.209	0.685	1.331

Main Effects Chart Analysis

This chart plots the average part values for each operator.
The purpose of the chart is to check for operator bias.
Points beyond the control limits are indications that bias exists.
There is evidence of detectable bias between the operators.
Review the ANOME chart for the differences.
Mean Range Chart Analysis
This charts plot the average range values for each operator.
The purpose of the chart is to see if the test-retest error is the same for each operator.
Points beyond the control limits are indications that differences in repeatability exist.
There is evidence of differences in the test-retest error between the operators.
Review the ANOMR chart for the differences.

	Repeatability (Test-Retest Error)
d_{2}	$\sigma_{\mathrm{pe}}=\overline{\mathrm{R}} / \mathrm{d}_{2}$
1.693	0.20181138

where d_{2} is a control chart constant depending on subgroup size.

	Probable Error (PE) and Measurement Increment	
PE	0.136	Probable Error $\left(0.675 \sigma_{\text {pe }}\right)$
$0.2(\mathrm{PE})$	0.0272	Smallest Effective Measurement Increment
2(PE)	0.272	Largest Effective Measurement Increment

PE is the minimum medium error of the measurement process.
50% of the measurements will fall within $+/$ - one PE.
PE defines the effective resolution of the measurement process.
The resolution should be between $0.2(\mathrm{PE})$ and 2(PE).
The measurement increment (0.01) is less than 0.2(PE),
increase the measurement increment so it is between O.2PE and 2PE.

The Analysis of Main Effects (ANOME) Chart compares the overall averages for the operator. The average for each operator is plotted. The overall average is plotted along with the ANOME upper and lower limits on the chart.

The Analysis of Mean Ranges (ANOMR) Chart compares the average range between operators. The average range for each operator is plotted. The overall average and the ANOMR upper and lower limits are added to the chart.

The ANOME and ANOMR calculations are given.

The main effects chart is analyzed. There are differences (bias) in the operators if some of the points are beyond the limits.

The mean range is analyzed. There are differences in repeatability if some of the points are beyond the limits.

The repeatability (standard deviation) of the test method is determined from the average range.

| Component | Variance | \% of Total | Estimates: | |
| :--- | ---: | ---: | :---: | :--- | :--- |
| Repeatability | 0.0407 | 0.7% | $\sigma_{\mathrm{pe}}{ }^{2}$ | Repeatability (pure error) variance |
| Reproducibility | 0.0514 | 0.8% | $\sigma_{0}{ }^{2}$ | Reproducibility variance |
| R\&R | 0.0922 | 1.5% | $\sigma_{\mathrm{e}}{ }^{2}$ | Combined R\&R variance |
| Product | 6.158 | 98.5% | $\sigma_{\mathrm{p}}{ }^{2}$ | Product variance |
| Total | 6.250 | | $\sigma_{x}{ }^{2}$ | Total variance |

Sigma

0.202 The variance components are calculated and the
0.227 \% of total variance for the various components is
0.304 given.
2.481 If the process sigma was entered, it is used to
2.500 determine the total variance. If not, the parts used in the study are used to determine the total variance.
Product variance estimated from the process sigma entered.

```
\mp@subsup{\sigma}{0}{}}\mp@subsup{}{}{2}=\mp@subsup{s}{\textrm{o}}{}\mp@subsup{}{}{2}-(o/n o p)\mp@subsup{\sigma}{pe}{}\mp@subsup{}{}{2}\mathrm{ where soo }\mp@subsup{}{}{2}=\mathrm{ variance of operator averages.
    The equations used in the calculations are given.
```

```
\(\sigma_{p}{ }^{2}=\sigma_{x}{ }^{2}-\sigma_{e}{ }^{2}\)
```

```
\(\sigma_{p}{ }^{2}=\sigma_{x}{ }^{2}-\sigma_{e}{ }^{2}\)
```

Intraclass Correlation Coefficients		
Intraclass Correlation Coefficient (Repeatability) =	0.9934	
$\rho_{\mathrm{pe}}=\sigma_{\mathrm{p}}{ }^{2} /\left(\sigma_{\mathrm{p}}{ }^{2}+\sigma_{\mathrm{pe}}{ }^{2}\right)$		Two interclass coefficients are calculated: one
Intraclass Correlation Coefficient (Repeatability \& Reproducibility) = $\rho_{e}=\sigma_{p}^{2} /\left(\sigma_{p}^{2}+\sigma_{e}^{2}\right)$	0.9853	based on the repeatability and one based on both the repeatability and reproducibility

Type of Class Monitor

Based on Repeatability: This is a First Class Monitor
Based on Repeatability and Reproducibility: This is a First Class Monitor

ρ	Type of Monitor	Reduction of Process Signal $^{\mathbf{a}}$	Chance of Detecting ± 3 Std. Error Shifts ${ }^{\text {b }}$	Ability to Track Process Improvements
0.8 to 1.0	First Class	Less than 10%	$>99 \%$ with Rule 1	Up to Cp80 $=2.22$

Table reproduced with permission from EMP III Evaluating the Measurement System
by Donald J. Wheeler, Copyright 2006 SPC Press.
${ }^{a}$ A signal occurring on a control chart is reduced in strength by 1 - square root of ρ_{o}.
${ }^{\mathrm{b}}$ The probability that the measurement process can detect a significant shift.
Rule 1: Point beyond the control limits.
Rule 2: 2 out of 3 consecutive points on the same side of the average are >1 sigma from the average.
Rule 3: 4 out of 5 consecutive points on the same side of the average are >2 sigma from the average.
Rule 4: 8 consecutive points on the same side of the average.
${ }^{\text {c }}$ The process capability where the measurement process will move down to a lower class.
Watershed USL = Watershed Specifications ${ }^{1}$ and Precision to Tolerance Ratio
Watershed LSL $=$
Watershed Tol. $=$
by the PE adjustment.
Example: For 96\% Mfg. Specs, P/T = 4(PE)/Watershed Tolerance
${ }^{6}$ Precision + Bias to Tolerance Ratio is the \% of the watershed tolerance consumed by the PE adjustment using both the repeatability and reproducibility.

Data					Optional Data Table
Run No.	Operator	Part	Result	Comment	
1	a	1	0.29		
31	a	1	0.41		
61	a	1	0.64		
2	a	2	-0.56		
32	a	2	-0.68		
62	a	2	-0.58		
3	a	3	1.34		
33	a	3	1.17		
63	a	3	1.27		
4	a	4	0.47		
34	a	4	0.5		
64	a	4	0.64		
5	a	5	-0.8		
35	a	5	-0.92		
65	a	5	-0.84		
6	a	6	0.02		
36	a	6	-0.11		
66	a	6	-0.21		
7	a	7	0.59		
37	a	7	0.75		
67	a	7	0.66		
8	a	8	-0.31		
38	a	8	-0.2		
68	a	8	-0.17		
9	a	9	2.26		
39	a	9	1.99		
69	a	9	2.01		
10	a	10	-1.36		
40	a	10	-1.25		
70	a	10	-1.31		
11	b	1	0.08		
41	b	1	0.25		
71	b	1	0.07		
12	b	2	-0.47		
42	b	2	-1.22		
72	b	2	-0.68		
13	b	3	1.19		
43	b	3	0.94		
73	b	3	1.34		
14	b	4	0.01		
44	b	4	1.03		
74	b	4	0.2		
15	b	5	-0.56		
45	b	5	-1.2		
75	b	5	-1.28		
16	b	6	-0.2		
46	b	6	0.22		
76	b	6	0.06		
17	b	7	0.47		
47	b	7	0.55		
77	b	7	0.83		
18	b	8	-0.63		
48	b	8	0.08		
78	b	8	-0.34		
19	b	9	1.8		
49	b	9	2.12		
79	b	9	2.19		

20	b	10	-1.68
50	b	10	-1.62
80	b	10	-1.5
21	c	1	0.04
51	c	1	-0.11
81	c	1	-0.15
22	c	2	-1.38
52	c	2	-1.13
82	c	2	-0.96
23	c	3	0.88
53	c	3	1.09
83	C	3	0.67
24	c	4	0.14
54	c	4	0.2
84	C	4	0.11
25	c	5	-1.46
55	C	5	-1.07
85	c	5	-1.45
26	C	6	-0.29
56	c	6	-0.67
86	c	6	-0.49
27	c	7	0.02
57	C	7	0.01
87	c	7	0.21
28	c	8	-0.46
58	c	8	-0.56
88	C	8	-0.49
29	C	9	1.77
59	C	9	1.45
89	C	9	1.87
30	C	10	-1.49
60	C	10	-1.77
90	C	10	-2.16

